(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(x))) → +(fib(s(x)), fib(x))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fib(0') → 0'
fib(s(0')) → s(0')
fib(s(s(x))) → +'(fib(s(x)), fib(x))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
fib(0') → 0'
fib(s(0')) → s(0')
fib(s(s(x))) → +'(fib(s(x)), fib(x))
Types:
fib :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
fib
(6) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
x))) →
+'(
fib(
s(
x)),
fib(
x))
Types:
fib :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
fib
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fib(
gen_0':s:+'2_0(
+(
2,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
fib(gen_0':s:+'2_0(+(2, 0)))
Induction Step:
fib(gen_0':s:+'2_0(+(2, +(n4_0, 1)))) →RΩ(1)
+'(fib(s(gen_0':s:+'2_0(+(1, n4_0)))), fib(gen_0':s:+'2_0(+(1, n4_0)))) →IH
+'(*3_0, fib(gen_0':s:+'2_0(+(1, n4_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
x))) →
+'(
fib(
s(
x)),
fib(
x))
Types:
fib :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
fib(gen_0':s:+'2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fib(gen_0':s:+'2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
x))) →
+'(
fib(
s(
x)),
fib(
x))
Types:
fib :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
fib(gen_0':s:+'2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fib(gen_0':s:+'2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
(14) BOUNDS(n^1, INF)